
Proposal:
Wheel Variants

March 21, 2025

Jonathan Dekhtiar, NVIDIA

Problem
Statement01

2

- No way to accurately describe the “hardware platform”
- What type of accelerators do you have (e.g. CUDA 11, CUDA 12, ROCM, TPU, etc.)
- What “compute capability” (e.g. SM 90, SM 85, etc.)
- What ARM version (e.g. ARMv7, ARMv8, etc.)
- What X86 version (e.g. x86_64-v2, x86_64-v3, etc)
- What special CPU instruction (e.g. AVX512, SSE, etc.)

- What about describing FPGA / ASIC support ?

- What about specific hardware function (e.g. AV1 encoding/decoding) ?

3

Why “Wheel Variants” ?

Problem: Python Packaging lacks the ability to finely describe “hardware”

This can not be the best answer our community has - We must do better.

4

Why “Wheel Variants” ?

Problem: Python Packaging lacks the ability to finely describe “hardware”

This can not be the best answer our community has - We must do better.

5

Why “Wheel Variants” ?

Problem: Python Packaging lacks the ability to finely describe “hardware”

Problem: Python Packaging lacks the ability to finely describe “hardware”

This can not be the best answer our community has - We must do better.

6

Why “Wheel Variants” ?

Some References:

- https://pypackaging-native.github.io/key-issues/gpus/

- https://pypackaging-native.github.io/key-issues/simd_support/

7

Why “Wheel Variants” ?

Problem: Python Packaging lacks the ability to finely describe “hardware”

https://pypackaging-native.github.io/key-issues/gpus/
https://pypackaging-native.github.io/key-issues/simd_support/

User Rationale02

8

https://wheelnext.dev/proposals/pepxxx_wheel_variant_support/#rationale

● A user wants to install a version of NumPy that is accelerated for their CPU architecture

● A user wants to install PyTorch / JAX / vLLM that is accelerated for their GPU architecture

● A user wants to install a version of mpi4py that has certain features enabled
(e.g. specific MPI implementations for their hardware)

● SciPy wants to provide packages built against different BLAS libraries, like OpenBLAS and
Accelerate on macOS. This is something they indirectly do today using different macOS platform
tags

● Manylinux cannot express x86-64-v2 requirements in Manylinux_2_34

9

Wheel Variant - User Rationale

https://github.com/wheelnext/wheelnext/pull/2#discussion_r1957200935
http://github.com/pypa/manylinux/issues/1725

Design &
Feature Space03

10

11

- We need: Needs to allow “arbitrary metadata”
=> (not GPU, CPU, TPU, FPGA, ASIC etc. or even hardware-focused)

- We do not want: not a “pre-approved list of tags” (e.g. CPU: arm64, x86_64, etc.)

- Why:
- We can’t know today the use cases of tomorrow (python for quantum compute?)
- The compute landscape is becoming more complex, more optimized everyday.
- We cannot hope to maintain a list of tags [too many, too many sources]
- Different python communities might use this feature for different purposes

Design Requirement - “Arbitrary Variant Definition”

12

- We need: We need to be able to combine variant information coming from
different sources [e.g. GPU Driver version & CPU support for AVX]

- We do not want: Wheel Variants to only be able to include WV information
from one source.

- Why:
- Wheel Variant “plugins” should be able to “simultaneously describe” a .whl file.

- We need to be able to combine information from different sources [GPU, CPU, etc.]

Design Requirement - “Arbitrary combination of METADATA”

13

- We need: Wheel Variants should not interfere with the normal “python
packaging/installer” workflow & ecosystem.

- We do not want: Wheel Variants to impact packages that don’t need it.

- Why:
- This is a niche feature that only affect a small percentages of project

- Not every Python users/maintainers should have to care

Design Requirement - “If you don’t need, you shouldn’t care”

14

- We need: Wheel Variant design should include a mechanism to ensure these
“special wheels” will be ignored by installers (e.g. uv, pip) that don’t support
them:

- Not yet implement
- Old release who didn’t support them

- We do not want: To confuse an installer that doesn’t support Wheel Variants.

- Why:
- It will be very hard to get the PEP accepted if it breaks any previous release of

every installers: uv, pip, etc.

Design Requirement - “Do not break old installers”

15

- We need: We need a standardized “plugin API” that all “build-backends”
[setuptools], “installers” [pip, uv], “workflow managers” [pdm, poetry, uv] can
use and rely on.

- We do not want: To depend on a public API inside of PIP: `from pip import XYZ`

- Why:
- To guarantee “tool agnosticism”, we can not depend on a public API in one tool.

- PyPA has consistently refused to maintain any “public user code-API” inside PIP.

Design Requirement - “No Public API inside PIP”

16

- We need: Ability to define “arbitrary metadata/tag” from outside the standard
 packaging tooling ecosystem (installers, build backends, etc.)

- We do not want: Have to send PRs to any number projects to “declare” the
 existence of a new metadata / tag.

- Why:
- Maintainers of the installer/packaging ecosystem can not be expected to become

expert on hardware (CPUs, GPUs, TPUs, ASIC, FPGAs, etc.)
=> they can’t be expected to review “FPGA-related code”

- The maintenance load to review all these PRs would be significant

Design Requirement - “Externally Defined: Plugin centric”

17

- We need:
- We need a way for users to specify:

- pluginA > pluginB (e.g. I care more about my GPU support than AVX support)
- Plugins needs a way to specify:

- featureA > featureB (e.g. x86-64-v2 is more important than AVX support)

- We do not want: a flat list of plugins and features with no relative priorities

- Why:
- Not all features have the same relative importance
- Multiple variants can match a given system (e.g. a generic and a specific)

Design Requirement - “2D Prioritization: plugin & feature”

18

- We need: It shouldn’t matter how many different variants are possible or
exists. Deciding which Variant to install should be near instant.

- We do not want: As we scale the number of variant / metadata, the install
command take significant time.

- Why:
- The search space can become very large very fast

- Combinatorial Products of features

Design Requirement - “Scaling should be cheap”

19

- We need: A way to cache, manage cache, void cache of the “platform
detection and variant resolution”.

- We do not want: Want to re-analyze the entire platform for every single `pip
install package` command

- Why:
- Loading a bunch of libraries to check versions can be expensive

- System calls to detect X, Y, Z can also be expensive

Design Requirement - “Caching is important or critical”

20

- We need: A way for an “expert user” to specify: they desire a specific variant
or set of variants in this specific order. Don’t do perform automatic resolution.
`[uv] pip --variant=ABC package`

- We do not want: Have no way for the user to overwrite the automatic
resolution if they so wishes.

- Why:
- CI Systems may use this
- Advanced users with specific use-cases
- Going around a bug in a specific variant

Design Requirement - “Forced variant installation”

21

- We need: A way for a user to “disable variant behavior”:
`[uv] pip install –no-variant package`

- We do not want: Have no way for the user to disable variant installation.

- Why:
- CI Systems may use this
- Advanced users with specific use-cases
- Going around a bug in a specific variant

Design Requirement - “Forced variant deactivation”

Technical
Proposal04

22

23

Design Requirement - “Arbitrary Variant Definition”

Wheel Variant: dummy_project-0.0.1-py3-none-any-36266d4d+HAL9000.whl

METADATA File

Variant-hash: 36266d4d

Variant: fictional_hw :: architecture :: HAL9000

Variant: fictional_hw :: compute_accuracy :: 0

Variant: fictional_hw :: compute_capability :: 6

Variant: fictional_hw :: humor :: 2

● Plugin Name: `fictional_hw`

24

Design Requirement - “Arbitrary Variant Definition”

Wheel Variant: dummy_project-0.0.1-py3-none-any-36266d4d+HAL9000.whl

METADATA File

Variant-hash: 36266d4d

Variant: fictional_hw :: architecture :: HAL9000

Variant: fictional_hw :: compute_accuracy :: 0

Variant: fictional_hw :: compute_capability :: 6

Variant: fictional_hw :: humor :: 2

● Plugin Name: `fictional_hw`

● Defines “4 variables”

25

Design Requirement - “Arbitrary Variant Definition”

Wheel Variant: dummy_project-0.0.1-py3-none-any-36266d4d+HAL9000.whl

METADATA File

Variant-hash: 36266d4d

Variant: fictional_hw :: architecture :: HAL9000

Variant: fictional_hw :: compute_accuracy :: 0

Variant: fictional_hw :: compute_capability :: 6

Variant: fictional_hw :: humor :: 2

● Plugin Name: `fictional_hw`

● Defines “4 variables”

● With “1 value assigned per variable”

26

Design Requirement - “Arbitrary combination of METADATA”

Wheel Variant: dummy_project-0.0.1-py3-none-any-6b4c8391+deepthought+quantum_foam.whl

METADATA File

Variant-hash: 6b4c8391

Variant: fictional_hw :: architecture :: deepthought

Variant: fictional_hw :: compute_accuracy :: 10

Variant: fictional_hw :: compute_capability :: 10

Variant: fictional_hw :: humor :: 0

Variant: fictional_tech :: quantum :: foam

● Legal to combine “metadata”
from different sources/plugin.

=> Example: CUDA 12 with AVX512

● Can really be anything so long it follows
the “standard format”
<provider_name> :: <variable> :: <value>

27

Wheel Variant: dummy_project-0.0.1-none-any-36266d4d+HAL9000.whl

METADATA File

Variant-hash: 36266d4d

Variant: fictional_hw :: architecture :: HAL9000

Variant: fictional_hw :: compute_accuracy :: 0

Variant: fictional_hw :: compute_capability :: 6

Variant: fictional_hw :: humor :: 2

HASH 36266d4d

Design Requirement - “If you don’t need, you shouldn’t care”

Design Requirement - “Do not break old installers”

28

Wheel Variant: dummy_project-0.0.1-none-any-36266d4d+HAL9000.whl

METADATA File

Variant-hash: 36266d4d

Variant: fictional_hw :: architecture :: HAL9000

Variant: fictional_hw :: compute_accuracy :: 0

Variant: fictional_hw :: compute_capability :: 6

Variant: fictional_hw :: humor :: 2

HASH 36266d4d

Design Requirement - “If you don’t need, you shouldn’t care”

Design Requirement - “Do not break old installers”

Human Readable Alias

29

Design Requirement - “If you don’t need, you shouldn’t care”

Design Requirement - “Do not break old installers”

Standard Wheel

Wheel
Variants

METADATA File
Variant-hash: 36266d4d

-rw-r--r-- 1 user user 1266 Feb 20 06:50 dummy_project-0.0.1-py3-none-any.whl

-rw-r--r-- 1 user user 1778 Feb 20 06:50 dummy_project-0.0.1-py3-none-any-36266d4d+hal9000.whl

-rw-r--r-- 1 user user 1773 Feb 20 06:50 dummy_project-0.0.1-py3-none-any-4f8ae729.whl

-rw-r--r-- 1 user user 1777 Feb 20 06:50 dummy_project-0.0.1-py3-none-any-57768a46.whl

-rw-r--r-- 1 user user 1795 Feb 20 06:50 dummy_project-0.0.1-py3-none-any-6b4c8391+deepthought.whl

-rw-r--r-- 1 user user 1779 Feb 20 06:50 dummy_project-0.0.1-py3-none-any-9091cdc4.whl

-rw-r--r-- 1 user user 1760 Feb 20 06:50 dummy_project-0.0.1-py3-none-any-e684be6f.whl

30

[D 2025-02-20 15:33:01.863 pip.commands.install:108 v0.1.0] [Variant: 0000] `109a2da5`: NOT FOUND ...

[D 2025-02-20 15:33:01.863 pip.commands.install:108 v0.1.0] [Variant: 0001] `c0111c07`: NOT FOUND ...

[D 2025-02-20 15:33:01.863 pip.commands.install:108 v0.1.0] [Variant: 0002] `b5789fbd`: NOT FOUND ...

[...]

[D 2025-02-20 15:33:02.065 pip.commands.install:108 v0.1.0] [Variant: 5984] `8a11085e`: NOT FOUND ...

[D 2025-02-20 15:33:02.065 pip.commands.install:108 v0.1.0] [Variant: 5985] `d0dff1f7`: NOT FOUND ...

[D 2025-02-20 15:33:02.065 pip.commands.install:108 v0.1.0] [Variant: 5986] `44da9896`: NOT FOUND …

[I 2025-02-20 15:33:02.065 pip.commands.install:102 v0.1.0] ###### Best Variant: `9091cdc4` ######

[I 2025-02-20 15:33:02.065 pip.commands.install:104 v0.1.0] Variant-Data: fictional_tech :: quantum :: SUPERPOSITION

[I 2025-02-20 15:33:02.065 pip.commands.install:104 v0.1.0] Variant-Data: fictional_tech :: risk_exposure :: 25

[I 2025-02-20 15:33:02.065 pip.commands.install:104 v0.1.0] Variant-Data: fictional_tech :: technology :: auto_chef

[I 2025-02-20 15:33:02.065 pip.commands.install:105 v0.1.0] ######################################

[I 2025-02-20 15:33:02.065 pip.commands.install:130 v0.1.0] Installing: sandbox_project-0.0.1-py3-none-any-9091cdc4+autochef.whl ...

Design Requirement - “Scaling should be cheap”

Thank you for your attention

